Density Large Deviations for Multidimensional Stochastic Hyperbolic Conservation Laws
نویسندگان
چکیده
منابع مشابه
Large Deviations Principle for Stochastic Conservation Laws
Abstract. We investigate large deviations for a family of conservative stochastic PDEs (viscous conservation laws) in the asymptotic of jointly vanishing noise and viscosity. We obtain a first large deviations principle in a space of Young measures. The associated rate functional vanishes on a wide set, the so-called set of measure-valued solutions to the limiting conservation law. We therefore...
متن کاملLarge Deviations Principles for Stochastic Scalar Conservation Laws
Large deviations principles for a family of scalar 1 + 1 dimensional conservative stochastic PDEs (viscous conservation laws) are investigated, in the limit of jointly vanishing noise and viscosity. A first large deviations principle is obtained in a space of Young measures. The associated rate functional vanishes on a wide set, the so-called set of measurevalued solutions to the limiting conse...
متن کاملMultidimensional Upwind Methods for Hyperbolic Conservation Laws
We present a class of second-order conservative finite difference algorithms for solving numerically time-dependent problems for hyperbolic conservation laws in several space variables. These methods are upwind and multidimensional, in that the numerical fluxes are obtained by solving the characteristic form of the full multidimensional equations at the zone edge, and that all fluxes are evalua...
متن کاملLarge Deviations Principle for Perturbed Conservation Laws
We investigate large deviations for a family of conservative stochastic PDEs (conservation laws) in the asymptotic of jointly vanishing noise and viscosity. We obtain a first large deviations principle in a space of Young measures. The associated rate functional vanishes on a wide set, the so-called set of measure-valued solutions to the limiting conservation law. We therefore investigate a sec...
متن کاملNonoscillatory Central Schemes for Multidimensional Hyperbolic Conservation Laws
We construct, analyze, and implement a new nonoscillatory high-resolution scheme for two-dimensional hyperbolic conservation laws. The scheme is a predictor-corrector method which consists of two steps: starting with given cell averages, we first predict pointvalues which are based on nonoscillatory piecewise-linear reconstructions from the given cell averages; at the second corrector step, we ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Statistical Physics
سال: 2017
ISSN: 0022-4715,1572-9613
DOI: 10.1007/s10955-017-1935-3